Драйвера для светодиодов

Платы для светодиодных драйверов

Драйвера для светодиодов являются совершенно необходимыми устройствами, которые осуществляются стабилизацию питания светодиодов. Что такое светодиод – это полупроводниковый прибор с электронно-дырочным переходом, который излучает свет при пропускании через него тока в прямом направлении. От обычного диода светодиод отличается не только способностью светиться при подключении тока, но также значительно большим падением напряжения и очень небольшим (несколько вольт) значением пробивного напряжения при обратном подключении. То есть, при неправильном подключении светодиода, скорее всего, он немедленно и необратимо сгорит.

Светодиоды имеют очень нелинейную вольт-амперную характеристику – до некоторого значение напряжения светодиод практически вообще не пропускает ток, при дальнейшем повышении напряжения ток резко возрастает и, после достижения допустимого значения, происходит быстрый перегрев и немедленный выход прибора из строя.

Вольт-амперная характеристика светодиода

Пример вольт-амперной характеристики белого светодиода

Яркость свечения светодиода также прямо зависит от силы проходящего через него тока. Все это делает необходимым включить в электрическую цепь устройство стабилизации тока. В простейшем случае для индикаторных светодиодов при токах до сотни миллиампер можно обойтись простым резистором. Но для ярких светодиодов, питающихся большими токами, нужно значительно более сложное устройство. Это устройство называется драйвер. Именно драйвер контролирует и стабилизирует ток, проходящий через светодиод.

Существует широкое разнообразие схем драйверов под самые разные нужды. Рассмотрим наиболее простые и популярные типы драйверов для светодиодов.

Линейный драйвер для светодиодов.

Структурная схема линейного драйвера для светодиода

Предельно упрощенная схема линейного драйвера

От входного источника питания Vin электрический ток следует к выходу драйвера (точка подключения нагрузки – светодиода) Vout через ключ Sw. В цепи также присутствуют конденсаторы Cin и Cout, которые сглаживают скачки напряжения во входном и выходном участках цепи. Регулируя отношение времен, когда ключ открыт и закрыт можно управлять выходным напряжением в диапазоне от нуля до Vin вольт. Ключ переключается с высокой частотой – от единиц до десятков килогерц. Поэтому никакого мерцания в свечении светодиода, естественно, не заметно. В качестве ключа на практике применяются, как правило, мощные полевые транзисторы, затвором которых управляет либо специализированная микросхема, либо микроконтроллер.

Главным достоинством драйверов данного типа является их принципиальная простота. Готовые драйвера имеют небольшие размеры и относительно невысокую стоимость. Отсутствие индуктивностей в схеме драйвера устраняет серьезный источник помех, что позволяет таким драйверам работать очень стабильно.

Главный недостаток – КПД драйвера прямо определяет отношение выходного напряжения ко входному. Это и обозначает область применения драйвера – либо для совсем небольших рабочих токов (до 100мА), либо для случаев, когда напряжение источника питания близко величине падения напряжения на светодиоде. Пример последнего случая – литий-ионный аккумулятор в качестве источника питания и светодиод Cree XML-2 в качестве нагрузки. Здесь КПД линейного драйвера в худшем случае будет около 78%, что потребует рассеивания до 2,2 Вт тепла. Это существенная величина, но некритичная при достаточном охлаждении.

Пример линейного устройства - драйвер для светодиодов FLASHLED L24C

Импульсный понижающий драйвер для светодиодов.

Более сложными по устройству, но и с более широкими возможностями являются импульсные драйвера. Вот также предельно упрощенная условная схема импульсного понижающего драйвера.

Структурная схема импульсного понижающего драйвера для светодиода

Схема импульсного понижающего драйвера

Когда ключ Sw замыкается, ток в выходном участке цепи плавно возрастает, также происходит «накачка» дросселя L1. Благодаря ЭДС самоиндукции дросселя, при размыкании ключа Sw ток не обрывается мгновенно, а продолжает какое-то время течь в том же направлении через нагрузку и диод D1. Ключ, управляемый специальной микросхемой или микроконтроллером, переключается с большой частотой (до нескольких мегагерц). Выходное напряжение может регулироваться от 0 до Vin.

КПД таких драйверов может достигать 90% и более. Это позволяет подключать мощные светодиоды к источникам питания с напряжениями существенно выше рабочих напряжений светодиодов. Например, сверх яркий светодиод мощностью в 10Вт к паре последовательно соединенных литий-ионных аккумуляторов.

Недостатки таких драйверов – возросшие из-за мощной индуктивности габариты. Кроме того, дроссель является серьезным источником электромагнитных помех, что в комплексе с чрезвычайной компактностью драйвера требует особой аккуратности при разводке платы устройства.

Удачные модели понижающих импульсных драйверов, например, здесь или здесь.

Импульсный повышающий драйвер для светодиодов.

В случае, когда рабочее напряжение светодиода больше напряжения выдаваемого источником тока, используются импульсные повышающие драйвера. Вот упрощенная условная схема одного и типов таких драйверов:

Структурная схема импульсного повышающего драйвера для светодиода

Схема импульсного повышающего драйвера

В начале ключ Sw разомкнут, выходное напряжение Vout равно входному Vin. И, поскольку это напряжение меньше рабочего напряжения светодиода, ток через цепь практически не течет (помните график в самом начале статьи?).

При замыкании ключа Sw ток начинает течь через дроссель L1, в его сердечнике накапливается энергия. При размыкании ключа индуктивность начинает разряжаться через подключенную нагрузку. При этом к входному напряжению источника питания Vin добавляется ЭДС самоиндукции дросселя. Выходное напряжение Vout достигает необходимой величины, чтобы подключенный светодиод начал светиться. Также при этом заряжается конденсатор Cout. Постепенно дроссель разряжается, для его зарядки вновь замыкается ключ Sw. В это время светодиод питается за счет конденсатора Cout, мгновенному разряду которого препятствует диод D1.

Ключ, как и у ранее описанных драйверов, управляется специализированной микросхемой или микроконтроллером. КПД таких драйверов также весьма высок (до 90% и более). Недостатки схожи с недостатками понижающих импульсных драйверов.

Повторюсь, упомянутые схемы – это лишь небольшая часть большого разнообразия типов устройств для преобразования и контроля напряжения питания светодиодов. Но, благодаря относительной простоте, они употребляются наиболее часто.

Также во всех указанных схемах для простоты опущены блоки контроля тока – важнейшая часть драйвера для светодиода. Обычно контроль тока осуществляется с помощью резисторов очень небольшого сопротивления (обычно десятые доли ом) и устройства, которое измеряет падение напряжения на них. Как правило, это же устройство управляет ключом драйвера и в комплексе представляет собой специализированную микросхему, являющуюся сердцем драйвера для светодиода. Также эти функции может выполнять микроконтроллер.

Любые драйвера – импульсные или линейные – не обладают КПД 100% и имеют обыкновение греться тем более, чем больший ток они обеспечивают, и чем большая разница во входном и выходном напряжении имеет место быть. Кроме того, в готовом изделии драйвер часто располагается в непосредственной близости от питаемого им светодиода, который в процессе работы греются также очень не слабо. Для светодиода перегрев вреден, поскольку существенно снижается качество его работы и срок службы. Кроме того, при неправильном охлаждении силовая часть готового устройства может начать греть элементы питания. А это обычно литий-ионные аккумуляторы, сильно греть которые совсем не рекомендуется – они могут банально взорваться, нанося совсем небанальные повреждения.

Поэтому приличный драйвер для светодиода должен обладать возможностью контролировать как рабочую температуру светодиода, так и свою собственную. Также полезно и приятно, когда драйвер не только позволяет переключать несколько режимов работы светодиода, но и контролирует степень заряда батарей. Для обеспечения всего этого уже не обойтись без использования микроконтроллеров и достаточно сложных программ их работы.

Мы сами занимаемся разработкой и производством драйверов для мощных светодиодов. И, несмотря на то, что качество и надежность предлагаемых устройств многократно подтверждена годами надежной работы в большом количестве фонарей, драйвера и, особенно, их логическая часть продолжают постоянно развиваться. Мы стараемся учесть пожелания и замечания максимального числа пользователей. Кроме того, вполне возможна разработка и производство драйвера по индивидуальному заказу. Звоните – договоримся!

Читайте также статью "Самодельный драйвер для мощных светодиодов", в которой описываются некоторые схемы и практических опыт самостоятельного создания драйверов.

Оцените статью: 1 1 1 1 1 1 1 1 1 1 (9 оценок, средняя 4.50 из 5)


Ваши комментарии